
Mostafa Arifin Page 1 Zak Smith

Abstract

A duplicate system has two identical pieces of hardware which perform the same computation in
parallel and then compare the results; if they disagree, an error message is generated. The duplicate
system cannot tolerate faults but can only detect them. There is no method of determining which
unit is faulty. However, a duplicate system can mask faults if the voter knows which unit is faulty.

We implemented an AN code protected duplicate ALU system. We injected arbitrary faults and
measured the fault detection capability. We found a 90% improvement in our duplex system over
the simplex system.

Mostafa Arifin Page 2 Zak Smith

1. Introduction

One way to provide uninterrupted reliable computation is to use a TMR (three modular
redundancy) configuration in which a majority voter decides the answer. It is possible to use less
hardware to provide similar reliability if the faulty unit is known. We propose to study a system
which will be able to detect the error and provide correct data in case of a faulty unit.

2. Background

In any system with modular redundancy (duplicate, TMR, nMR), the reliability of the system can
be increased if it is immediately evident that the data coming from one unit has errors. For
example, a normal TMR system needs to have at least two units providing the same answer to
provide the correct result. If the data coming from each unit could be interpreted to determine if it
were in error, then only one unit would have to give the correct result for the voter to decide the
correct result. One way to indicate the “data is in error” is to use codewords to encode the data.

Error correcting codes are used extensively to protect data in DRAM, disks, and networks. The
most common are the SEC-DED codes, which can correct any single bit error and detect two bit
errors. There are also some other types like SEC-SBD, SEC-DED-SBD, etc. However, the
limitation of these general types of codes is that to do some arithmetic operation, the data must be
separated from the codeword. After the arithmetic operation, the data must be encoded into a
codeword again. Thus the code does not protect the data as the arithmetic operation is executed. An
error in the adder, for example, would not produce an invalid codeword because the incorrectly-
added result was encoded into a valid codeword after addition.

A class of codes called Arithmetic Codes exist which protect data through certain arithmetic
operations. Thus the entire data-path can be protected from errors. These errors will be
immediately apparent by inspecting the resulting codeword.

3. Arithmetic Codes

Arithmetic Codes are very useful when it is desired to check arithmetic operations such as addition,
subtraction, multiplication, and division. The data presented to the arithmetic operation is encoded
before the operations are performed. After completing the arithmetic operations, the resulting
codewords are checked to make sure that they are valid codewords. If the resulting codewords are
not valid, an error condition is signalled.

An Arithmetic Code must be an invariant to a set of arithmetic operations. An arithmetic code, f(),
has the property that f(b*c) = f(b)*f(c), where b and c are operands, * is some arithmetic operation,
and f(b) and f(c) are the arithmetic codewords for the operands b and c respectively. To completely
define an Arithmetic Code, the method of encoding and the arithmetic operations for which the
code is invariant must be specified. The most common examples of the arithmetic codes are the AN
codes, residue codes, and inverse residue codes.

The simplest Arithmetic Code is the AN code which is formed by multiplying each data word by
some constant, A. It should be mentioned here that the AN codes are invariant to addition and
subtraction but not to multiplication or division. If N and M are two operands to be encoded, the
resulting codewords will be A*N and A*M, respectively. If the two codewords are added, the sum
is (A*N+A*M), which is the codeword of the correct sum. The operations performed under an AN

Mostafa Arifin Page 3 Zak Smith

code can be checked by determining if the results are evenly divisible by the constant A. If not, an
error condition is signalled.

The magnitude of the constant, A, determines both the number of extra bits required to represent
the codewords and the error detection capabilities provided. The selection of the constant, A, is
critical to the effectiveness and the efficiency of the resulting code. First, for binary codes, the
constant must not be a power of two. To see the reason for this limitation, suppose that we encode
the binary number (an-1 an-2 an-3an-4 … … … a2 a1 a0) by multiplying by constant A = 2a.
Multiplication by 2a is equivalent to left arithmetic shift of the original binary word, so the
resulting codeword will be (an-1 an-2 an-3an-4 … … … a2 a1 a0 0 0 … … 0) where a 0s have been
appended to the original binary number. The decimal representation of the codeword is given by

an-12
a+n-1 … …+ a22

a+2 + a12
a+1 + a02

a + 0*2a-1 + … … … + 0*21 +0*20

which is evenly divisible by 2a. It is also easy to see, however, that changing just one coefficient
will still yield a result that is evenly divisible by 2a. For example, if the coefficient of the 2a term
changes from 0 to 1, the result will remain evenly divisible by 2a. Thus AN code that has A = 2a is
not capable of detecting single bit errors.

An example of an AN code is the 3N code where all words are encoded by multiplying by a factor
of 3. If the original data words are n-bits in length, the codewords for the 3N code will require n+2
bits. The encoding of the operands in the 3N code can be performed by a simple addition if we can
recognize that we can multiply any number by 3 by adding the original number to a value that is
twice that number. In other words, we form 3N by adding N and 2N. In general, the value of A
should be relatively a prime number.

A 3N code can be used to detect single bit errors because no words with hamming distance one are
divisible by three. A valid codeword with a single-bit error can be represented by n*3 ± 2n, where n
is the bit in error. This is not evenly divisible by three because 2n mod 3 is not zero.

4. Objective

Our objective is to build a AN protected ALU system, to inject faults into the system, and to
measure the fault detection capabilities.

 Inputs to System

 Inject Faults Fault Detection

System Output

Figure 1: System Model

ALU
System

Mostafa Arifin Page 4 Zak Smith

5. ALU System Design and Implementation

 Figure 2: Overall System Implementation

We implemented a duplicate ALU system with a voter. The prime responsibility of the voter was to
detect the error and to select the correct output. The voter output was compared with the “Golden
Adder” (which generates the true sum of the two inputs) output to see whether the voter output was
correct or not (for statistics). Our entire design was fully pipelined.

5.1 Sub-Modules

5.1.1 Input and Codeword Generation

The inputs are expecting two eight bit words from the external world which are stored in the first
stage pipeline and fed into the codeword generation block. As we have previously discussed, we are
implementing an Arithmetic Code and we selected the value of A=3. This multiply was
implemented using a simple eight-bit adder, i.e. N + (N + N). The final adder output after the
codeword generation is ten bits. The coded input is stored in the second stage pipeline registers.
Figure 3 describes the codeword generator block.

*A

*AIn2

In1

ALU

*A

*AIn2

In1

ALU

Div
Mod

Div
Mod

Voter
Data

Hard
Error

Mostafa Arifin Page 5 Zak Smith

In
 Codeword Out

Figure 3: Codeword Generation

5.1.2 Arithmetic Operation

We restricted our arithmetic operation to addition only for simplicity. The inputs to the adder come
from the coded input out of the codeword generator block and the adder output is captured in the
third stage pipeline register.

5.1.3 Quotient and Remainder Generation

After the coded ALU output is generated, it needs to be divided by the constant A=3 to get the
quotient and the remainder. For the division, we followed a very simple technique (Figure 4). After
the remainder and the quotient are generated, the remainder is checked to see whether it is non-
zero. In case of a non-zero remainder an error flag is generated. Depending on the two error signals
from two ALUs, the voter selects the correct quotient. After the final quotient has been selected, it
is compared with the golden adder output to get the statistics (Figure 5).

5.1.4. Flags and Counters

The remainder is checked for non-zero value and the quotient is checked with the golden adder
output for the correct result. These give us two different flags: Data_Corrupt (compared to the true
value) and Error_Detectetd (for non-zero remainder). From these, we were able to derive four
different cases of flag combinations and four different counters were used to keep track of the case
statistics.

Case Name Shortened Name Case Description
Data_Ok, No Error Detected DO, NE Fault had no effect on output

Data_Ok, Error Detected DO, E Error Detected, Data not affected
Data_Not_Ok, Error Detected DNO, E Fault affected output and Detected

Data_Not_Ok, No Error Detected DNO, NE Fault affected output but not detected

Table 1: Case Description

 Adder

 Adder

Mostafa Arifin Page 6 Zak Smith

6. Implementation Technique

For the overall design of our schematic, we used Mentor pld_da (design architect), and for
functional verification, we used Mentor pld_quicksim. Our original target of this project was to
implement this in hardware with the help of Xilinx XC40006E FPGAs, but working FPGAs were
not available. As a result, we had to focus on simulations only.

Figure 4: First Iteration of Division Algorithm (not an optimized algorithm)

Remainder ≥ 0 Remainder < 0

Start

Subtract the Divisor Register from
the remainder register and place
result in remainder register

Shift quotient register to the left
setting the new rightmost bit to 1

Restore original value by adding the divisor to
the remainder. Shift quotient to right and set the
new least significant bit to 0

Shift the Divisor register right 1 bit

Test Remainder

Is it (n+1)th iteration ?

Done

Mostafa Arifin Page 7 Zak Smith

7. Simulation Methodology

We injected arbitrary faults in the circuit and then simulated the schematic with the input data set.
Since we are dealing with two eight bit input data sets, there are 216 possible input combinations.
But more importantly, simulations of 216 inputs would take about 45 minutes. As a result, we
limited our input combinations such that the both the inputs are divisible by seven which gave us
361 different combinations. At the end of each run, we recorded the values of the case counters.
For the next result, we picked a different fault at a different place and repeated the same procedure.

 Quotient1

 Remainder1 Error1

 Quotient2 Output

 Remainder2 Error2

Figure 5: Error Detection and Correct Quotient Selection

8. Fault Models

We injected four different types of fault models: SSA (single stuck-at), LGS (logic gate
substitution), Bridging (BD), and Bizarre (BZ). The following table describes the definitions of
each fault model with respect to our schematic and the number of faults injected.

(Note: not just injected in core – voter/divider/encoder not assumed to be fault free)

Fault Models Definition Number of faults injected
SSA (single stuck-at) One of the wires in the bus is

always either connected to
VCC or to GND

15

LGS (logic gate substitution) One of the gates is changed to
other gate. Example: an AND

gate becoming a NAND

7

BD(bridging) Two or three wires of a bus are
connected to each other

5

BZ(bizarre) Random bits (say bit 2, 3, 5, 7)
are interchanged

2

ALU

ALU

Rem≠0??

Rem≠0??

Voter

Mostafa Arifin Page 8 Zak Smith

Table 2: Fault Models and Definitions

9. Results

9.1.1 SSA Fault Model Statistics

Iteration Number DO, NE DO, E DNO, E DNO, NE
1 77 0 284 0
2 181 0 180 0
3 361 0 0 0
4 0 361 0 0
5 2 0 0 359
6 176 0 185 0
7 0 361 0 0
8 180 0 181 0
9 100 0 0 261
10 82 0 0 279
11 82 0 0 279
12 361 0 0 0
13 190 0 0 171
14 361 0 0 0
15 0 361 0 0

Total 2153 1083 830 1349

Table 3: SSA fault model statistics

9.1.2 Graphical Representation

DO, NE
40%

DO, E
20%

DNO, E
15%

DNO, NE
25%

Mostafa Arifin Page 9 Zak Smith

Figure 6: SSA Fault Model Statistics

9.1.3 SSA Fault Model Analysis

1. Most of the injected faults caused no errors (⇒ 2153/(15*361) = 39.8%)
2. All undetected faults (⇒ 1349/(15*361) = 24.9%) caused by either

i. Faulty Inputs
ii. Faulty divider or faulty voter

3. Data errors detected (⇒ 830/(15*361) = 15.3%)
4. Erroneous error detection (⇒ 1083/(15*361) = 20%)
5. Safety = (# Fault not excited + # Error detected) / (#Total Input set)
 = (2153 + 1083 + 830)/(15*361) = 75%

9.2.1 LGS Fault Model Statistics

Iteration Number DO, NE DO, E DNO, E DNO, NE
1 0 361 0 0
2 0 0 0 361
3 361 0 0 0
4 262 0 99 0
5 104 76 181 0
6 81 100 180 0
7 213 0 148 0

Total 1021 537 608 361

Table 4: LGS fault model statistics

9.2.2 Graphical Representation

DO, NE
41%

DO, E
21%

DNO, E
24%

DNO, NE
14%

Mostafa Arifin Page 10 Zak Smith

Figure 7: LGS Fault Model Statistics

9.2.3 LGS Fault Model Analysis

1. Most of the injected faults caused no errors (⇒ 1021/(7*361) = 40.4%)
2. All undetected faults (⇒ 361/(7*361) = 14.29%) caused by

i. Faulty Inputs
ii. Faulty divider or voter

3. Data Errors detected (⇒ 608/(7*361) = 24.1%)
4. Erroneous error detection (⇒ 537/(7*361) = 21.25%)
5. Safety = (# Fault not excited + # Error detected) / (#Total Input set)
 = (1021 + 537 + 608)/(7*361) = 85.71%

9.3.1 BD Fault Model Statistics

Iteration Number DO, NE DO, E DNO, E DNO, NE
1 82 0 0 279
2 172 0 189 0
3 188 0 173 0
4 180 91 90 0
5 180 90 91 0

Total 802 181 543 279

Table 5: BD Fault Model Statistics

9.3.2 Graphical Representation

DO, NE
45%

DO, E
10%

DNO, E
30%

DNO, NE
15%

Mostafa Arifin Page 11 Zak Smith

Figure 8: BD Fault Model Statistics

9.3.3 BD Fault Model Analysis

1. Most of the injected faults caused no errors (⇒ 802/(5*361) = 44.4%)
2. All undetected faults (⇒ 279/(5*361) = 15.46%) caused by

i. Faulty Inputs
ii. Faulty divider or voter

3. Data Errors detected (⇒ 543/(7*361) = 30.08%)
4. Erroneous error detection (⇒ 181/(5*361) = 10.03%)
5. Safety = (# Fault not excited + # Error detected) / (#Total Input set)
 = (802 + 181 + 543)/(5*361) = 84.54%

9.4.1 BZ Fault Model Statistics

Iteration Number DO, NE DO, E DNO, E DNO, NE
1 38 0 13 310
2 38 0 13 310

Total 76 0 26 620

Table 6: BZ Fault Model Statistics

9.4.2 Graphical Representation

DNO, NE
85%

DO, NE
11%

DNO, E
4%

Mostafa Arifin Page 12 Zak Smith

Figure 9: BZ Fault Model Statistics

9.4.3 BZ Fault Model Analysis

1. Most of the injected faults caused undetected errors (⇒ 620/(2*361) = 85.87%) because bits
scrambled were internally consistent, but not OK compared to the outside world

2. Data OK, No Error Detected (⇒ 76/(2*361) = 10.53%) caused by
3. Data Errors detected (⇒ 26/(2*361) = 10.53%)
4. No erroneous error detection (⇒ 0/(2*361) = 0.0%)
5. Safety = (# Fault not excited + # Error detected) / (#Total Input set)
 = (76 + 26)/(2*361) = 14.13%

9.5.1 Overall Fault Model Statistics

Fault Model
Name

DO, NE DO, E DNO, E DNO, NE

SSA 2153 1083 830 1349
LGS 1021 537 608 361
BD 802 181 543 279
BZ 76 0 26 620

Total 4052 1801 2007 620

Table 6: Overall Fault Model Statistics

9.5.2 Graphical Representation

DO, NE
39%

DO, E
17%

DNO, E
19%

DNO, NE
25%

Mostafa Arifin Page 13 Zak Smith

Figure 10: Total Fault Model Statistics

9.5.3 Overall Fault Model Analysis

1. Most of the injected faults caused no errors (⇒ 4052/(29*361) = 38.7%)
2. All undetected faults (⇒ 2609/(29*361) = 24.92%) caused by

i. Faulty Inputs
ii. Faulty divider or voter

2. Data Errors detected (⇒ 2007/(29*361) = 19.17%)
3. Erroneous error detection (⇒ 1801/(29*361) = 17.2%)
4. Safety = (# Fault not excited + # Error detected) / (#Total Input set)
 = (4052+1801+2007)/(29*361) = 75.08%
(note: the above statistics were weighted with the number of injected faults)

10. Results Summary

The voter can decide correctly if and only if the faulty unit signals error, or the data was ok. From
the overall fault model statistics, we found out that the probability of a duplex system working with
one fault is 75.1%, where as the probability of a simplex system working with one fault is 38.7%.
So from these we can conclude that we get about 90% improvement over the simplex system.

11. Future Work

For future work, we could build TMR system and evaluate performance with similar fault injection
procedure. Secondly, we could compare the performance of plain TMR system with our AN code
protected duplex system. Last of all, we could be able to compare hardware costs of the two
systems.

Mostafa Arifin Page 14 Zak Smith

Reference:

[raofuj:89] T. R. N. Rao, E. Fujiwara. “Error-Control Coding from Computer Systems”,
Englewood Cliffs, NJ. Prentice Hall, 1996

[wake:78] J. Wakerly, “Error Detecting Codes, Self-Checking Circuits, and Applications”,
New York, NY. Elsevier North-Holland, 1978

[petwel:72] W. W. Peterson, E. J. Weldon, JR. “Error-Correcting Codes” 2nd Edition,
Cambridge, MA. MIT Press 1972

[prad:96] D. K. Pradhan, editor, “Fault-Tolerant Computer System Design” 1st Edition,
Prentice Hall, 1996

[henmann: 68] Henry. B. Mann, editor, “Error-Correcting Codes”, proceedings of a symposium,
New York, Wiley 1968

[gossgraf:93] Michael Gossel, Steffen Graf, “Error-Detection Circuits” New York, NY.
McGraw-Hill 1993

[patthenn:98] D. Patterson, J. Hennessy, “Computer Organization and Desgin: The
Hardware/Software Interface” Morgan Jaufamann Publishers Inc., 2nd Edition, 1998;

Mostafa Arifin Page 15 Zak Smith

Appendix:

Mentor Schematics in order:

1. Overall Duplicate ALU Schematic with Voter
2. Single ALU Unit
3. Codeword Generator
4. Division Unit
5. A=3 Block

